Size Distributions

Notation

By convention blackboard bold characters denote size distributions

Info

Blackboard bold font: 𝕒, 𝕓, 𝕔, 𝕕, 𝕖, 𝕗, π•˜, ...

Histogram Representation

The size distribution is represented as a histogram. It is a composite data type SizeDistribution that has the fields Dp, De, Ξ”lnD, S, and N.

  • π•Ÿ.Dp: Geometric midpoint diameters
  • π•Ÿ.De: Bin edge diameters
  • π•Ÿ.Ξ”lnD: Log bin spacing, Ξ”lnD = ln(Dup/Dlow)
  • π•Ÿ.S: Spectral density
  • π•Ÿ.N: Number concentration in the bin

The size distribution can be constructed various ways. The easiest is to use one of the constructor functions. For example, the lognormal function creates a lognormal size distribution. The following example creates a lognormal size distribution with number concentration equals 200 cm-3, geometric mode diameter of 80 nm, geometric standard deviation of 1.2, with 10 size bins between 30 and 300 nm. The result is placed in a DataFrame for display purposes. The r function is to round the results for clarity. The output illustrates that the SizeDistribution type is simply a histagram table.

r(x) = round.(Int,x)    # Function to round and convert to Int
π•Ÿ = lognormal([[200, 80, 1.2]]; d1 = 30.0, d2 = 300.0, bins = 10);
DataFrame(
    Dlow = r(π•Ÿ.De[1:end-1]),
    Dup = r(π•Ÿ.De[2:end]),
    Ξ”lnD = round.(π•Ÿ.Ξ”lnD, digits = 2),
    Dp = r(π•Ÿ.Dp),
    S = r(π•Ÿ.S),
    N = r(π•Ÿ.N),
)

10 rows Γ— 6 columns

DlowDupΞ”lnDDpSN
Int64Int64Float64Int64Int64Int64
130380.233400
238480.234210
348600.2353379
460750.236727664
575950.238541896
6951190.2310612830
71191500.2313482
81501890.2316900
91892380.2321200
102383000.2326700

Manipulating Size Distributions

Size distributions can be intuitively manipulated through operators. For example, the sum of two size distributions (𝕩 = π•Ÿβ‚ + π•Ÿβ‚‚) is the superposition.

# Example addition of size distributions
π•Ÿβ‚ = lognormal([[120, 90, 1.20]]; d1 = 10.0, d2 = 1000.0, bins = 256)   # size distribution
π•Ÿβ‚‚ = lognormal([[90, 140, 1.15]]; d1 = 20.0, d2 = 800.0, bins = 256)    # size distribution
𝕩 = π•Ÿβ‚ + π•Ÿβ‚‚
Particle diameter (nm) 40 100 400 π•Ÿβ‚ π•Ÿβ‚‚ 𝕩 Distribution h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? -400 -300 -200 -100 0 100 200 300 400 500 600 700 -300 -280 -260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 -300 0 300 600 -300 -290 -280 -270 -260 -250 -240 -230 -220 -210 -200 -190 -180 -170 -160 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 dN/dlnD (cm-3)

The package implements a list of Operators for size distribution manipulation. Check out the Tutorial Session 1 and/or Notebook S3 in the Notebooks section for visualizations.