References

Cruz, C. N. and S. N. Pandis (1997). A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei. Atmospheric Environment 31, 2205–2214, DOI:10.1016/S1352-2310(97)00054-X.

Gysel, M., McFiggans, G., and Coe, H. (2009) Inversion of Tandem Differential Mobility Analyser (TDMA) Measurements, Journal of Aerosol Science, 40, 134–151, https://doi.org/10.1016/j.jaerosci.2008.07.013.

Hansen, P. C. (2000) The L-Curve and its Use in the Numerical Treatment of Inverse Problems, in Computational Inverse Problems in Electrocardiology, ed. P. Johnston, Advances in Computational Bioengineering, 119-142, WIT Press.

Hagwood, C. (1999) The DMA Transfer Function with Brownian Motion a Trajectory/Monte-Carlo Approach, Aerosol Science & Technology, 30:1, 40-61, DOI:10.1080/027868299304877.

Hinds, W. C. (1999) Aerosol Technology, Properties, Behavior, and Measurement of Airborne Particles, Second Edition, John Wiley & Sons, Inc.

Knutson, E. O. & K. T. Whitby (1975) Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. (6)443-451, DOI:10.1016/0021-8502(75)90060-9.

Talukdar, Suddha S. & Mark T. Swihart (2003) An Improved Data Inversion Program for Obtaining Aerosol Size Distributions from Scanning Differential Mobility Analyzer Data, Aerosol Science and Technology, 37:2, 145-161, DOI:10.1080/02786820300952.

TSI Inc. (2009) Series 3080 Electrostatic Classifiers. Operation and Service Manual, P/N 1933792, Revision J March 2009.

Petters, M. D., A. J. Prenni, S. M. Kreidenweis, P. J. DeMott (2007) On measuring the critical diameter of cloud condensation nuclei using mobility selected aerosol, Aerosol Science & Technology, 41(10), 907-913, doi:10.1080/02786820701557214.

Petters, M. D., C. M. Carrico, S. M. Kreidenweis, A. J. Prenni, P. J. DeMott, J. R. Collett Jr., and H. Moosmüller (2009) Cloud condensation nucleation ability of biomass burning aerosol, Journal Geophysical Research, 114, D22205, doi:10.1029/2009JD012353.

Petters, M. D. (2018) A language to simplify computation of differential mobility analyzer response functions, Aerosol Science & Technology, 52:12, 1437-1451, DOI:10.1080/02786826.2018.1530724.

Petters, M. D.: Revisiting matrix-based inversion of scanning mobility particle sizer (SMPS) and humidified tandem differential mobility analyzer (HTDMA) data, Atmos. Meas. Tech., 14, 7909–7928, https://doi.org/10.5194/amt-14-7909-2021, 2021.

Rader, D.J. and P.H. McMurry (1986) Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation,Journal of Aerosol Science, 17(5), 771-787,DOI:10.1016/0021-8502(86)90031-5

Reineking A. & J. Porstendörfer (1986) Measurements of Particle Loss Functions in a Differential Mobility Analyzer (TSI, Model 3071) for Different Flow Rates, Aerosol Science and Technology, 5:4, 483-486, DOI:10.1080/02786828608959112.

Shen, C., Zhao, G., and Zhao, C. (2020) Effects of Multi-Charge on Aerosol Hygroscopicity Measurement by HTDMA, Atmospheric Measurement Techniques Discussions, 2020, 1–15, https://doi.org/10.5194/amt-2020-338.

Snider, J. R., M. D. Petters, P. Wechsler, and P. S. K. Liu, (2006), Supersaturation in the Wyoming CCN instrument, Journal Atmospheric Oceanic Technology, 23, 1323-1339, doi:10.1175/JTECH1916.1.

Stolzenburg, M. R. & P. H. McMurry (2008) Equations Governing Single and Tandem DMA Configurations and a New Lognormal Approximation to the Transfer Function, Aerosol Science and Technology, 42:6, 421-432, DOI:10.1080/02786820802157823.

Wang, S. C. and Flagan, R. C. (1990). Scanning electrical mobility spectrometer. Aerosol Science and Technology, 13:2, 230–240.

Wiedensohler, A. (1988) An approximation of the bipolar charge distribution for particles in the submicron size range, Journal of Aerosol Science, 19:3, 387-389, DOI:10.1016/0021-8502(88)90278-9.